1.2 多塔那些事

1.2.1 序言

近年来,建筑结构中采用双塔甚至多塔这种结构形式越来越多,最有名的双塔莫过于马来西亚的石油 双塔(如图 1.2.1 所示),其建筑高度为 452m,共 88 层,从 1996 年 2 月 13 日竣工后,雄霸世界最高建筑 长达 7 年,于 2003 年 10 月 17 日被台北 101 超越,但仍是目前世界最高的双塔楼,也是世界第四高的大 楼。

侯晓武

图 1.2.1 马来西亚石油双塔

下文将对采用 midas Building 进行多塔分析时需要注意的问题逐一梳理。

1.2.2建模

1.2.2.1 导入 PKPM 模型

在 PKPM 中有两种定义多塔的方式。一种是在 PMCAD 中进行楼层组装时,为每一个楼层增加一个 "层底标高",以广义层的方式完成。另一种是将各塔在同一高度处的楼层放在同一个标准层内,并在 PMCAD 中组装后,到 SATWE 中进行多塔的补充定义。如果双塔对应层的层高不一致,此时仅能采用第 一种方法,即定义广义多塔的形式来完成。

如果在 Building 中导入 PKPM 模型, 仅支持第二种方法定义的多塔。如果是按照第一种方式定义的多塔, 需要将指定的层底标高删除后进行转换。下面以错层多塔为例, 介绍该类结构的转换方法。 PKPM 中定义的某错层多塔模型如图 1.2.2 所示:

图 1.2.2 某错层多塔结构 PKPM 模型

在 Building 中导入,并定义多塔后模型如图 1.2.3 所示。

图 1.2.3 导入 Building 中多塔模型

可以发现塔 2 的竖向构件都少了一截。此时即便在"楼层与标准层"中修改层高也无济于事。如果想 要将该种结构导入 Building,需要做如下操作:

首先在 PKPM 中删除图 1.2.4 广义层定义中的底标高。

楼层组装								
組装项目和 复制层数	操作 标准层	层高(mm)	- <u>組装</u> 结果 层号:	层名:	标准层	层高	底标高	面活荷 載折滅
2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 22 24 25 26 ¥	簿1标准层 第2标准层 第3存准层	2500 ♥ 层名 目前 ♥ 目前计算底 标高(a) 18.000 ■ 読荷載折 「梯切(a) 一様役(b) 種類(c) ● 金看标確层	No1: No2: No3: No4: No5: No6: No6: No8: No9: No10:		PL1 FL1 FL2 FL2 FL2 FL3 FL3 FL3	H=3000 H=3000 H=3000 H=3000 H=3000 H=2500 H=2500 H=2500 H=2500	0.000 3.000 8.000 12.000 15.000 18.000 23.000 23.000 25.500	
✓ 生成与基	础相连的墙柱支则	座信息			đ	定①	Į. Į	消()

图 1.2.4 修改底标高

修改后模型如图 1.2.5 所示

图 1.2.5 修改底标高后 PKPM 模型

导入 Building 后,模型如图 1.2.6 所示。

图 1.2.6 删除底标高后导入 Building 模型

在该模型基础上,定义多塔。需注意如下事项:

(1)指定塔范围不能有遗漏的点和构件,也不能在两个塔块里有重复的点和构件。否则点击"适用" 后会提示"有构件不在定义的范围"或"某点属于两个塔块"。

(2) 定义塔块范围时,应在楼层视图中采用俯视图进行多边形选择。最好钝化掉最下面几层的基塔部分构件,只留下上部几个塔块构件,这样方便选择。多个塔块定义范围在相交分界处要注意,不要使相交区域包括相同构件。

定义多塔后模型如图 1.2.7 所示。

图 1.2.7 定义多塔后模型图

在楼层与标准层中,删除6F。删除后模型图如图1.2.8所示。

对于通过广义层定义的多塔结构,如果要导入到 Building 中,需首先在 PKPM 楼层组装中将底标高删除,按正常模型建立方法建立模型。导入后模型中塔2部分会出现悬空。可以在导入 Building 后进行修改。

1.2.2.2 在 midas Building 中建模

第一种是将双塔对应高度处的标准层放在同一个标准层内,进行组装得到整体模型。而后利用程序的 定义多塔功能(菜单:结构->标准层和楼层->定义塔)进行分塔。

第二种是先定义多塔及各塔标准层后直接组装成多塔,这里不一一介绍。

1.2.2.3 定义多塔后需要重新定义,该如何处理?

目前在 midas Building 中不支持多塔定义后的恢复。如果要恢复到定义多塔前的模型,需要进行如下操作:

通过快捷键 Ctrl+D, 打开"按属性激活/选择"对话框。

≎ 选择/激活属性	x
- 医性 主要属性 下生素属性 不在层、不正面 给在的平面 和行类型 材料和 整面 厚度	次級属性 222 : 137 222 : 127 223 : 127 224 : 127 225 : 127 227 227 227 227 227 227 227
	☑ 包含点
	1 146 15 C 1+1/2
解除这样	
□添加 □交叉	关闭

图 1.2.9 按属性激活/选择对话框

点击"选择"按钮,如图1.2.9 所示,选中该层所有构件。 菜单:结构->标准层和楼层->复制标准层(如图1.2.10 所示)

图 1.2.10 复制标准层

勾选"选择构件和节点",选择要复制到哪一个标准层,最后点击"适用"。 重复上述操作,将塔2中的所有楼层都复制到塔1的标准层中。而后删除塔2,如图1.2.11所示。

图 1.2.11 删除塔 2

说明:

- A. 由 PKPM 中导过来的模型,原来的每一个楼层都会自动识别为一个标准层。导入后可以在标准 层与楼层对话框中(如图 1.2.12 所示)进行修改。这样不仅执行上述操作时会更方便,计算时也 会节省时间。
- B. 尽管如上提供了一种方法,但是终归还是比较繁琐。对于多塔结构,建议定义多塔之前先将模型 另存后进行操作。

标准层和楼层 示准层和楼层 楼服	言材料									
标准层		楼层组装	ŧ							
名称	楼板类型 🎴	Base	塔1	塔2						
Base	刚性板		名称	层高 (m)	标高 (m)	标准层	DL (kN/m2)	LL (kN/m2)	特殊层	
P1	別性板		13F	2.9	43.8	P15	3.9	2	请选择	•
P2	刚性析		12F	2.9	40.9	P14	3.9	2	请选择	
	前性析		11F	2.9	38	P13	3.9	2	请选择	
F4	제하는 전		10F	2.9	35.1	P12	3.9	2	请选择	
<			9F	2.9	32.2	P11	3.9	2	请选择	
标准层数量	1		8F	2.9	29.3	P10	3.9	2	请选择	
PIPEDAARXIE			7F	2.9	26.4	P9 🔽	3.9	2	请选择	
「添加」	插入」「開除」		6F	2.9	23.5	P8	3.9	2	请选择	
塔块			5F	2.9	20.6	P7	3.9	2	请选择	<u>~</u>
名称 Base										
添加 (定义材料	插入 删除	解除相	前约束的	9地下室	言 数	0	<= 地下	室层数(编辑	€) €) (C)

图 1.2.12 标准层和楼层对话框

1.2.3 振型分析结果的讨论

该模型的结构图如图 1.2.13 所示,前 8 阶振型图如图 1.2.14 所示,所对应的振型简图如题 1.2.15 所示。

图 1.2.13 某双塔结构模型图

(g)第7振型 (h)第8振型

从振型简图中可以看出,前六阶振型分别为单塔的Y向平动,X向平动以及扭转。由于双塔对称布置,因而振型的出现比较规律。而对于单塔,结构沿短边方向的抗弯刚度较长边小,因而该方向振型首先出现。 实际模型中,并不会严格按照这种理想状况,出现单塔单独振动。当某一个塔振动时,另一个塔也会振动, 只是与第一个塔相比会比较小。第七和第八振型分别为双塔的共同振动。

图 1.2.16 某振型简图

有一点需要注意的是,如果振型如图 1.2.16 所示时,尽管各单塔均为平动,但对于整体结构而言,其 表现为扭转。在 midas Building 中,此时的扭转方向因子可能大于平动。因而判断某一振型是平动还是扭转,除查看方向因子外,还应结合实际的振型进行判断。

1.2.4 定义多塔与否对结果的影响

1.2.4.1 刚性楼板假定

对于多塔结构,不定义多塔时,如果某标准层定义为刚性板,由于同一标准层内两个部分相互分离,因而程序处理时还是按照分块刚性计算的。

可以在后处理中,选择某一层,打开节点显示来进行查看。由图 1.2.17 可见,每一个单塔的楼板都显示有一个主控节点。

图 1.2.17 不分塔某层主控节点

对于多塔结构,如果定义了多塔,程序对于每个塔内的标准层,单独考虑刚性楼板假定,因而在这一 点上,两者是相同的。

1.2.4.2 风荷载计算

1.2.4.2.1 迎风面宽度

图 1.2.18 某多塔结构尺寸

荷载作用方向为沿结构长边方向:定义多塔时,各塔的迎风面宽度与不定义多塔时整体的迎风面宽度 相同,均为B,如图1.2.18所示。

荷载作用方向沿结构短边方向:定义多塔时,各塔的迎风面宽度分别为 L1 和 L2,不定义多塔时,迎 风面宽度为 L。

可以在结构分析之后,打开荷载控制对话框进行查看(图1.2.19-图1.2.21)。

			型系数:	10	.5		
范数据	体型系数:			1	.4		
观范: 建筑结构荷载规范 (GB50009-2012)	输入与上面体型	家数不同	司的楼层	和体型系	数		
地面粗糙度类别: CA GB CC CD	开始楼炉		法束模层	系数	t I		
修正后的基本风压(kN/m^2): 0.55	1						
1.荷载计算用阻尼比: 0.05							
考虑地形条件的修正系数: 1							
截载力设计风荷载效应放大系数: 1.1							
	风荷载工况						
考虑顺风向风振影响	作用方	向[度]	基	本周期[5 1	附加荷和	自动计算
考虑值问风报和扭转风报	a	a+90	а	a+90	计算		
机搬舒适度验算	0.00	90.00	2.70000	2.60000			0
全算用风压 0.55 kN/m2							<u> </u>
会算用阻尼比 0.02							

图 1.2.19 荷载主控数据

楼层	长度 (m)	宽度 (m)	自动
塔2:15F	19.89	26.7	N
塔2:14F	19.89	26.7	V
塔2:13F	19.89	26.7	V
塔2:12F	19.89	26.7	V
塔2:11F	19.89	26.7	V
塔2:10F	19.89	26.7	2
塔2:9F	19.89	26.7	V
塔2:8F	19.89	26.7	V V
<			>

图 1.2.20 迎风面宽度

迎风面宽度(单位:m)									
	定义多塔			不定义多塔					
层	X向	Y向	层	X向	Y向				
塔2:15F	19.89	26.7	15F	19.89	54				
塔2:14F	19.89	26.7	14F	19.89	54				
塔2:13F	19.89	26.7	13F	19.89	54				
塔2:12F	19.89	26.7	12F	19.89	54				
塔2:11F	19.89	26.7	11F	19.89	54				
塔2:10F	19.89	26.7	10F	19.89	54				
塔2:9F	19.89	26.7	9F	19.89	54				
墡2:8F	19.89	26.7	8F	19.89	54				
塔2:7F	19.89	26.7	7F	19.89	54				
塔2:6F	19.89	26.7	6F	19.89	54				
塔2:5F	19.89	26.7	5F	19.89	54				
塔2:4F	19.89	26.7	4F	19.89	54				
塔2:3F	19.89	26.7	3F	19.89	54				
増1:15F	19.89	26.7	2F	19.29	54				
塔1:14F	19.89	26.7	1F	35.65	58.6				
塔1:13F	19.89	26.7							
塔1:12F	19.89	26.7	1						
塔1:11F	19.89	26.7	1						
塔1:10F	19.89	26.7	1						
塔1:9F	19.89	26.7	1						
塔1:8F	19.89	26.7	1						
塔1:7F	19.89	26.7	1						
塔1:6F	19.89	26.7	1						
塔1:5F	19.89	26.7	1						
塔1:4F	19.89	26.7	1						
増1:3F	19.89	26.7	1						
Base:2F	19.29	54	1						
Base:1F	35.65	58.6	1						

图 1.2.21 定义多塔与否迎风面宽度比较

1.2.4.2.2 体型系数

结构不定义遮挡面时的体型系数:

图 1.2.22 不定义遮挡面时体型系数

结构定义遮挡面时的体型系数(设缝多塔背风面遮挡体型系数=0.5):

设缝多塔背风面遮挡体型系数可以根据两个塔的距离远近进行定义。距离较远时,不考虑双塔之间的 相互影响,可以将其定义为 0。双塔距离较近时,可不考虑双塔之间的风荷载作用,可将背风面遮挡体型 系数定义为 0.5,如图 1.2.23 所示。此时塔 2 左侧体型系数为 0.3,可能考虑的相对保守。如果此处塔 2 左 侧体型系数也为 0,将会导致左右两塔的体型系数不相等。这样当风荷载方向为从左向右时的体型系数与 风荷载沿相反方向时的体型系数不同。则风荷载与其它荷载组合时,不能简单通过±号进行考虑,这时程 序处理上将比较复杂。 1.2.4.3 结果比较

1.2.4.3.1 荷载

如前所述,分塔与否只影响风荷载,对于竖向荷载以及地震荷载并无影响。

X向风荷载(单位:kN)									
	定义	不定り	义多塔						
副	荷载	层	荷载	层	荷载				
塔2:8F	124.7	塔1:8F	124.7	8F	124				
塔2:7F	116.2	塔1:7F	116.2	7F	115.6				
塔2:6F	107.7	塔1:6F	107.7	6F	107.2				
塔2:5F	99.5	塔1:5F	99.5	5F	99				
塔2:4F	90.1	塔1:4F	90.1	4F	89.8				
Base:3F		78.3	3F	79.5					
Base:2F		71.3	2F	72.2					
Base:1F		67.4		1F	67.9				

表 1.2.1 某多塔结构分塔与否风荷载比较 (未定义遮挡面)

X向风荷载(单位:kN)									
	定义	不定义	义多塔						
层	荷载	层	荷载	层	荷载				
塔2:8F	273.97	塔1:8F	271.72	8F	545.34				
塔2:7F	169.08	塔1:7F	166.14	7F	334.91				
塔2:6F	184.8	塔1:6F	183.46	6F	367.83				
塔2:5F	209.04	塔1:5F	209.42	5F	417.96				
塔2:4F	194.61	塔1:4F	194.65	4F	388.81				
Base:3F		609.2	3F	609.19					
Base:2F		421.06	2F	421.08					
Base:1F		178.37		1F	178.41				

1.2.4.3.2 节点位移及构件内力

由于分塔与否,风荷载不同,因而风荷载作用下节点位移和构件内力必然不同。反应谱荷载作用下结 果比较见下图,可见节点位移和构件内力完全相同。

(a)不分塔

(b) 分塔

图 1.2.24 地震工况下结构位移

(a)不分塔

图 1.2.25 地震工况下梁端及柱端弯矩

1.2.4.3.3 层结果

分塔与否对层相关的结果有影响。若已经分塔,则程序会对每一个塔单独输出结果。

表 1.2.3 地震工况不分塔时层间位移角结果

塔	楼层	层高 (mm)	荷载工况	最大层间位移 (mm)	最大层间位移角	容许层间位移角	验算结果		
请按鼠标右键并点击'允许层间位移角'命令并修改允许值									
Base	8F	4000.00	RS_0	1.256	1/3183	1/800	OK		
Base	7F	4000.00	RS_0	1.585	1/2523	1/800	OK		
Base	6F	4000.00	RS_0	1.804	1/2217	1/800	OK		
Base	5F	4000.00	RS_0	1.840	1/2173	1/800	OK		
Base	4F	4000.00	RS_0	1.388	1/2882	1/800	OK		
Base	3F	4000.00	RS_0	0.502	1/7971	1/800	OK		
Base	2F	4000.00	RS_0	0.389	1/10285	1/800	OK		
Base	1F	4000.00	RS 0	0.234	1/17114	1/800	OK		

表 1.2.4 地震工况分塔时层间位移角结果

塔	楼层	层高 (mm)	荷载工况	最大层间位移 (mm)	最大层间位移角	容许层间位移角	验算结果			
请按鼠标右键并点击'允许层间位移角'命令并修改允许值										
塔1	8F	4000.00	RS_0	1.242	1/3221	1/800	OK			
塔1	7F	4000.00	RS_0	1.549	1/2583	1/800	OK			
塔1	6F	4000.00	RS_0	1.755	1/2279	1/800	OK			
塔1	5F	4000.00	RS_0	1.781	1/2246	1/800	OK			
塔1	4F	4000.00	RS_0	1.353	1/2957	1/800	OK			
塔2	8F	4000.00	RS_0	1.256	1/3183	1/800	OK			
塔2	7F	4000.00	RS_0	1.585	1/2523	1/800	OK			
塔2	6F	4000.00	RS_0	1.804	1/2217	1/800	OK			
塔2	5F	4000.00	RS_0	1.840	1/2173	1/800	OK			
塔2	4F	4000.00	RS_0	1.388	1/2882	1/800	OK			
Base	3F	4000.00	RS_0	0.502	1/7971	1/800	OK			
Base	2F	4000.00	RS_0	0.389	1/10285	1/800	OK			
Base	1F	4000.00	RS_0	0.234	1/17114	1/800	OK			

1.2.5 多塔连体结构的处理

连体结构大致可以分为两类:强连接和弱连接方式。

如果连体结构包含多层楼盖,且连接体结构刚度足够,能使主体结构整体协调受力及变形时,连体结 构与主体结构间采用两端刚接或两端铰接的方式,为强连接方式(如图 1.2.26(a)所示)。如果连接体结 构较弱,无法协调连体两侧的结构共同工作,连接体一端与结构铰接,一端为滑动支座,或两端均为滑动 支座,此时可称为弱连接方式(如图 1.2.26 (b) 所示)。

图 1.2.26 连体结构连接方式

对多塔连体结构进行分塔时,需要将连体与塔块之间断开,形成形式上的"一般多塔结构",然后在断 开部分,采用边界条件中的弹性连接来模拟构件的刚度。

对应于两种连接方式,可以采用不同的处理方法。

对于强连接形式,可以选择连体中间位置处,将构件断开 50mm 到 100mm 的距离。然后忽略两个节 点之间的相对变形,在两点之间采用刚性连接,如图 1.2.27 所示。分塔前后模型如图 1.2.28 和图 1.2.29 所 示。

图 1.2.27 刚性连接

图 1.2.28 分塔前模型图

图 1.2.29 分塔后模型图

对于弱连接,可以选择连体端部位置,将构件断开 50mm 到 100mm 的距离。两点之间采用弹性连接。 如一端为铰接,另一端为滑动连接可采用如图 1.2.30 所示方法进行设置。分塔前后模型如图 1.2.30 和图 1.2.31 所示。

图 1.2.30 弹性连接设置方法

图 1.2.31 分塔前模型图

图 1.2.32 分塔后模型图